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Abstract 

A computer generation of all the non-equivalent 
superspace groups for one-dimensionally modulated 
structures has been performed. Comparison of this 
result with the previous list by de Wolff, Janssen & 
Janner [Acta Cryst. (1981), A37, 625-636] shows that 
three superspace groups in this list are equivalent to 
others and that six groups had been overlooked. The 
new list contains 775 (3 + 1)-dimensional superspace 
groups. Some ambiguous points in the notation of 
the superspace groups and the selection of the wave 
vector are discussed. 

* This work was partly done, while on leave, as a visiting member 
of the Institute for Theoretical Physics, University of Nijmegen. 
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1. Corrections to the former list 

A list of (3+ 1)-dimensional superspace groups has 
been given by de Wolff, Janssen & Janner (1981), 
hereafter referred to as I. The list was calculated 
partly by computer, partly by hand. Although the 
calculation was done carefully and employing two 
independent methods, errors are almost unavoidable 
in computations of such length by hand. For that 
reason we have once more executed the calculations 
of the non-equivalent superspace groups in which all 
the steps were performed by means of a computer. 
Furthermore, in order to remove errors in program- 
ming, superspace groups have been generated by two 
independent programs based on the same theory 
(Janner & Janssen, 1979). As a result, several dis- 
crepancies have been found between the new list and 
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Table 1. List of  corrections to Table 2 in de Wolff, 
Janssen & Janner (1981) 

The  first and  second  co lumns  indicate  the basic space group,  the 
th i rd  the (3 + 1)-dimensional  Bravais class specifying the posi t ion 
o f  the correct ion.  The  last two columns  give the entry  as stated in 
I and  that  by  which  it should  be  replaced.  

(1) Correc t ions  involving groups  that  were missing or listed twice 
in I 

Basic space  g roup  Bravais class in I should  be 

24. I212121 12 1 12 
45b. I2cb 12 1 12 
46c. I2cm 12 1 12 
43a. Fdd2 17 123" 12 
43b. F2dd 17 12t" 1 
70. Fddd 17 123" 12 
67a. Cmma 13 12 123 
67a. Cmma 14 12 123 

120. 17tc2 21 1 12 

(2) Other  errors  

117. P4b2 20 1 3 
118. P4n2 20 1 3 

Heading above 12b. B2/ m B2/ ~ BB2/ ? 
Heading above 44a. Imm2 4: l s l  4: lss 
Heading above 42b. F2mm 1 : l s l  2: l s l  
Heading above 115.4m2 - -  add 3 : l q l  
Group 88. I4/a I4t/a 

* Bottom lines 1 and 3 are equivalent. 
5" Bottom lines 1 and 2 are equivalent. 

that in I. Besides a number of misprints, the present 
result shows that three superspace groups in the list 
in I are equivalent with other groups in the list while 
six superspace groups do not occur in I. This result 
has been confirmed also by hand calculations. All the 
corrections to be made are listed in Table 1. Finally 
we get 775 superspace groups for one-dimensionally 
modulated structures belonging to 24 Bravais classes, 
31 geometric crystal classes and 116 arithmetic crystal 
classes (in 3 + 1 dimensions). 

2. Ambiguity of certain symbols 

Some superspace groups are not uniquely determined 
by their two-line symbol as described in I: the same 
symbol may denote two non-equivalent superspace 
groups with the same basic space group given by the 
top line. This ambiguity occurs because satellites can 
be indexed in more than one way. For example, in 

oZmm_m it has been tacitly assumed the Bravais class - 11 
in I that (for a choice q = ye*) the general reflection 
condition is h + k +  l = 2n. Now " ;2cb consider P ~sr, which 
belongs to this Bravais class. Its basic space group 
I2cb has two glide planes a and c normal to b. In 
the superspace group they correspond to elements 
denoted by (~) and (~), respectively. The correspond- 
ing reflection conditions are h + m = 2n or l + m = 2n 
for hOlm. For the equivalent choice q = ( 1 - y ) e * ,  
which in practical cases may be preferable, the general 
reflection condition becomes h + k + l + m = 2n and 
the parallel symmetry elements are now (~) and (~) 

Table 2. Alternative symbols for basic space groups 
with symmetry elements with intrinsic translations in 
the direction of  the modulation vector q (which is chosen 
along the c axis), together with parallel elements without 

such a translation 

The  first symbol  is the s tandard  one. For  the Bravais class men-  
t ioned in the first co lumn the s tandard  symbol  gives rise to 
ambiguit ies tha t  are avo ided  by  using the al ternative symbol.  

Bravais class Basic g roup  Alternat ive symbol  

12 24. I212121 I21212 
12 45b. I2cb 12ab 
12 46c. I2cm I2am 
12 72b. Imcb lmab 
12 73. Ibca Foaa 
12 74b. Icmm Fomm 
15 39c Ac2m Ab2m 
15 41c. Ac2a Ab2a 
15 64c, Acam Abam 
15 67b. Acmm Abmm 
15 68b. Acaa Abaa 
21 108. I4cm I4bm 
21 110. I41cd I41bd 
21 120. I4c2 I71b2 
21 140. I4/mcm I4/mbm 
21 142. 14t/ acd I4t/  abd 

(and the reflection conditions I = 2n or h + m = 2n for 
h01m) so that the symbol for the superspace group 
in this setting could be written as p~2~b. This is iden- 
tical to the symbol used in I for the non-equivalent 
group, which has (i) instead of (~) and reflection 
condition h = 2n for h01 m ! 

One way to avoid this ambiguity is, of course, to 
mention the reflection conditions explicitly. An 
alternative solution is to choose a form of the top 
line that makes the bottom line independent  of  q. For 
instance, in our example the basic space group is 
equally well denoted by I2ab. Then the bottom lines 
111 and 1 s 1 yield unambiguous symbols for the two 
different groups involved. In Table 2 suitable alterna- 
tive symbols are listed for the 16 basic space groups 
for which the problem occurs. 

It should be stressed that what causes concern here 
is the double meaning of symbols. The fact that the 
bottom line as well as the reflection conditions (both 
general and special) depend on the choice of q is not 
in itself a serious drawback (cf. § 3). 

3. Non-unique symbols 

For the superspace group symbol described in I, it is 
worth mentioning that, apart  from the dependence 
on q just discussed, there are still other cases for 
which the bottom line is not unique. For operators 
denoted in the top line that leave q invariant (modulo 
reciprocal-lattice vectors) this bottom line represents 
~- -" t$ - - q r .  S, where 8 and s are translations in internal 
and external space, respectively, and qr is the rational 
component of the modulat ion wave vector. Possible 
values of r are 0, ~, + 1, + ¼ or + ~ (mod 1), for which 
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Table 3. Examples of equivalent superspace groups 

The first column indicates some space groups as they are listed in 
Table 2 of I. The remaining columns are the equivalent groups 
obtained from those in the first column by employing the wave 
vector shown in the heading. 

q=vc* q=(7-1)c*  q= (~,-2)c* 

p P4!  22 ID P4122 D P 4 1 2 2  
t i i  -- q i i  -- s~i 

F d d 2  D l ~ d d 2  D F d d 2  
1 1 1  ~ q q l  z $ s l  

p 141/ a p 1 4 1 /  a D I  41/ a 
t T -- q T -- s T 

q= ('y-3)c* 

pP61 

1, s, t, q or h is written in the bottom line. For 
superspace groups with non-zero q,, which are 
denoted by A, B, C, L, M, N, U, V, W and R in the 
prefix of the symbol, several values of r are possible. 
For example, we consider A Pmmm 111, which has q r=  
a*/2. By the convention in I, the first ('~) represents 
a (hyper-) mirror plane perpendicular to the a axis 
with z = 0. On the other hand, the same group also 
has a mirror plane parallel to this but a distance a/2 
apart because of the lattice translation a. The value 
of r corresponding to the latter is then ½. Hence the 
symbol for this plane is (~). Thus A Pmmm sl i represents 

APmra-ra T h i s  is analogous to the the same group as ,1 1 1 1 • 
situation in three dimensions, where, for example, 
Ammm could also be written as Ancb. However, 
conventions such as those that give preference to 
Ammm have not yet been formulated for superspace 
groups. Notice that, just as in the three-dimensional 
case, the non-uniqueness of the symbol does not play 
a role in the reflection conditions and is of no practical 
consequence. 

4. Equivalent superspace groups 

The q dependence of the superspace group symbol 
is related to the equivalence of superspace groups. 

D P m c n  For example, consider - s sT with q = 7e*, which is 
the superspace group appearing in the incommen- 
surate phase of K2SeO4 (Janner & Janssen, 1980). 
For the choice q =  ( y - 1 ) c * ,  the superspace group 

D P m c n  becomes - s 1~ because 8 is invariant and q, is - c*  
in this case. Thus a different choice of q may lead to 
a different superspace group. This is however always 
equivalent to the original one (Janner & Janssen, 
1979). For the sake of the practical problem encoun- 
tered in the determination of the superspace group, 
several examples of equivalent superspace groups are 
shown in Table 3. 

In addition, there are many equivalent superspace 
groups that are related to the choice of the basic 

D P  men vectors a, b, c. Consider again - s  sT. This is 
D P n a m .  equivalent to - T~s • the latter is obtained from the 

former by exchanging the a and c axes. Such a kind 
of equivalence relation is similar to that in the usual 
space groups. 

One of the authors (AY) is indebted to the Faculty 
of Science, University of Nijmegen, for financial 
support. 
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Abstract 

The determination of the full space symmetry of two 
interpenetrating lattices in a coincidence-site lattice 
orientation is discussed. The considered coincidence- 
site lattices are formed by two primitive cubic, face- 
centred cubic or body-centred cubic lattices. The two 
interpenetrating lattices form a dichromatic pattern 
and its symmetry is investigated by combining the 
three-dimensional periodicity of the coincidence-site 
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lattice with the point-symmetry operations of the 
motif characterizing the particular dichromatic pat- 
tem. This provides a very concise formulation for 
treating this subject, especially if antisymmetry (two- 
coloured symmetry) is used. The translational sym- 
metry of coincidence-site lattices with 2 < 5 0  is 
specified by determining the finest common sublattice 
of the two interpenetrating lattices. The point sym- 
metry is determined by using the principle of the 
symmetry of composites and it is shown that the 
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